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A variational polaron wave function pioneered by Toyozawa is utilized to elucidate exciton-phonon corre-
lations in a generalized Holstein Hamiltonian in the simultaneous presence of diagonal and off-diagonal
exciton-phonon couplings. We show that a simple analysis of quantum entanglement between excitonic and
phononic degrees of freedom allows one to effectively characterize both the small- and large-polaron regimes
as well as the crossover in between.
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I. INTRODUCTION

In this paper we extend a previous treatment of polaronic
self-trapping transition in the framework of quantum infor-
mation theory.1 Utilizing a versatile variational wave func-
tion, the Toyozawa ansatz,2,3 we revisit the classic problem
of polaron theory in one dimension incorporating simulta-
neous diagonal and off-diagonal exciton-phonon couplings.
The former is defined as a nontrivial dependence of the ex-
citon site energies on lattice coordinates, and the latter, as a
nontrivial dependence of the exciton transfer integral on lat-
tice coordinates. Hamiltonians containing off-diagonal
exciton-phonon coupling have not been adequately ad-
dressed in the polaron literature thanks to inherent difficul-
ties associated with obtaining accurate solutions.4 We have
shown that for diagonal exciton-phonon coupling a simple
analysis of quantum entanglement between excitonic and
phononic degrees of freedom allows an effective character-
ization of both small- and large-polaron regimes, and the
crossover in between. The effect of off-diagonal coupling for
exciton-phonon entanglement, however, was not considered.
Previous studies2,5 reveal that there are two branches of self-
trapping lines in the two-dimensional phase diagram spanned
by the transfer integral and off-diagonal exciton-phonon cou-
pling �i.e., the case of off-diagonal coupling only�. One of
the self-trapping regions occurs at the zone center and the
other at the zone boundary. The latter one is especially labo-
rious to pinpoint due to numerical difficulties encountered in
a variational procedure.

Previously, we undertook a numerical implementation6 of
a method proposed by Munn and Silbey7 to determine po-
laron properties in the presence of simultaneous diagonal and
off-diagonal couplings. The Munn-Silbey method was essen-
tially perturbative, with the coefficients of a canonical trans-
formation being fixed so as to limit the secular growth with
the temperature of the perturbation remaining after transfor-
mation. The Munn-Silbey method is expected to produce the
best description of polaron states at low temperatures as it
was formulated to cure high-temperature divergence.

Our work on the Munn-Silbey method was later followed
by a variational approach motivated to overcome several
limitations of the Munn-Silbey method.5 A flexible spanning
set of orthonormal eigenfunctions of the joint exciton-

phonon crystal momentum is used by the Toyozawa ansatz to
arrive at a variational estimate of the ground-state energy for
every value of the joint crystal momentum across the entire
Brillouin zone �as well as the complete set of polaron Bloch
functions associated with this band�. In all cases studied, we
have found the variational approach based on the Toyozawa
ansatz to yield polaron energy bands lower than those of the
Munn-Silbey method at all crystal momenta, establishing the
variational energy bands as the quantitatively superior re-
sults.

Quantum entanglement8 plays an essential role in the bur-
geoning field of quantum information in that it represents the
key physical resource for quantum information processing.9

Most recently, a growing amount of attention has been de-
voted to analysis of quantum entanglement in many-body
systems undergoing quantum phase transitions.10 In this pa-
per we aim to investigate the polaron from this contemporary
point. The particular form of quantum entanglement we will
analyze is between systems of distinct physical nature: the
exciton and its phonon bath. To emphasize self-trapping in
the presence of off-diagonal exciton-phonon coupling, we
will refer to the bipartite quantum entanglement between the
exciton and its phonon environment in the polaron problem
as heteroentanglement. This situation bears resemblance to
those in decoherence studies where a system under examina-
tion, e.g., a qubit, is coupled with its environmental degrees
of freedom, which spoils the purity of the system state. From
this point of view, the polaronic entanglement to be analyzed
in this paper can be viewed as a measure of the decoherence
of the excitonic �phononic� state induced by the coupling
with the lattice phonons �excitons�. We restrict our scope
here to utilizing the exciton-phonon entanglement as a tool to
probe the polaronic self-trapping in the simultaneous pres-
ence of diagonal and off-diagonal exciton-phonon interac-
tions. We make no claims on possible realizations of the
exciton-phonon entanglement as a resource for quantum
computation.

The paper is structured as follows. In Sec. II, the gener-
alized Holstein model is introduced, and a detailed descrip-
tion of the variational ansatz is given. In Secs. III–V, we
display the phase diagram with off-diagonal coupling and
study the self-trapping transition using heteroentanglement at
the zone center and zone boundary, respectively. Conclusions
are given in Sec. VI.
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II. MODEL HAMILTONIAN

The Holstein molecular crystal model describes a lattice
of two-level molecules interacting with a bath of nuclear
degrees of freedom:

Ĥ = �
n

�n�q�an
†an + �

m,n

m�n

Jmn�q�am
† an + Ĥph. �1�

Here an �an
†� are exciton annihilation �creation� operators for

the nth molecule, Ĥph is the bath �phonon� Hamiltonian, and
q represents the complete set of nuclear coordinates.
Exciton-phonon interactions originate from dependence of
molecular frequencies �n and intermolecular couplings Jmn
on nuclear coordinates q. We adopt Hamiltonian Eq. �1� with
the Einstein phonon Hamiltonian

Ĥph = �
n

��0bn
†bn, �2�

where bn
† creates a phonon of frequency �0 on site n, and we

have one Einstein oscillator per molecule. Exciton-phonon
interactions enter through the nuclear coordinate influence on
both molecular frequencies �diagonal coupling� and intermo-
lecular interactions �off-diagonal coupling�. Expanding mo-
lecular frequencies �n�q� to the first order in phonon coor-
dinate q, the first term of Eq. �1� reads

�
n

�n�q�an
†an = �

n

�n�0�an
†an + Ĥdiag, �3�

with the diagonal exciton-phonon coupling term

Ĥdiag = g��0�
n

an
†an�bn

† + bn� , �4�

and g is a dimensionless diagonal coupling constant. Ex-
panding intermolecular couplings Jmn�q� to the first order in
phonon coordinates, we write the second term of Eq. �1� as,
for example,

�
m�n

Jmn�q�am
† an = �

m�n

Jmn�0�am
† an + Ĥo.diag, �5�

with the transfer integral Jmn�0�=−J�n,m�1 and the off-
diagonal coupling term5–7,11

Ĥo.diag =
1

2
���0�

nl

�an
†an+1�bl

† + bl���n+1,l − �nl� + an
†an−1�bl

†

+ bl���nl − �n−1,l�� . �6�

The second term of Eq. �6� is the Hermitian conjugate of the
first, and we have assumed nearest-neighbor coupling of the
antisymmetric type with � as a dimensionless parameter
controlling the off-diagonal coupling strength. Off-diagonal
coupling may adopt various forms5,6,12 other than the anti-
symmetric type �Eq. �6��, and can play important roles in
determining electronic properties of solids. Equations �4� and

�6�, together with Ĥph and the zeroth-order intermolecular
coupling term, result in the generalized Holstein Hamiltonian

ĤGH �the original Holstein Hamiltonian contains diagonal
coupling only� �Ref. 13�:

ĤGH = �
n

�n�0�an
†an + Ĥdiag + �

mn

m�n

Jmn�0�am
† an + Ĥo.diag + Ĥph.

�7�

We may partition the generalized Holstein Hamiltonian ĤGH

into three terms, namely, the exciton Hamiltonian Ĥex, the

phonon Hamiltonian Ĥph, and the coupling Hamiltonian Ĥcpl:

ĤGH � Ĥex + Ĥph + Ĥcpl, �8�

where

Ĥex � �
n

�n�0�an
†an + �

mn

m�n

Jmn�0�am
† an, �9�

Ĥcpl � Ĥo.diag + Ĥdiag. �10�

This generalized Holstein Hamiltonian with simultaneous
diagonal and off-diagonal couplings to Einstein phonons has
been previously2,3,14,15 modeled by the Munn-Silbey ap-
proach and a variational wave function pioneered by Toy-
ozawa, and most recently, a more sophisticated variational
method has been used to solve this problem resulting in
lower ground-state energy.11 The variational wave function
pioneered by Toyozawa was labeled as the Toyozawa ansatz
in Ref. 3. The Toyozawa ansatz has been extended to include
two-dimensional off-diagonal exciton-phonon coupling.16

The variational methods employing relaxation iteration
techniques17,18 are shown to be rather efficient while remain-
ing quantitatively accurate compared with calculations in-
volving far more expensive computational resources.19,20

The Toyozawa ansatz has the form

�K� = N−1�
n

eiKn��n
K��

m

�m-n
K am

† �0�e. �11�

Here �K� is the lowest energy polaron state with crystal mo-
mentum K, �0�e is the exciton vacuum state, and ��n

K� are
phonon wave functions centered at site n containing a coher-
ent state on each site n2 with a displacement 	n2-n

K :

��n
K� = exp	− �

n2

�	n2-n
K bn2

† − 	n2-n
K� bn2

�
�0�ph. �12�

�0�ph is the phonon vacuum state, and ��n
K� differs from ��n�

K �
only by a shift of n-n� lattice constants. The parameters 	l

K

and �l
K are obtained variationally. The phonon wave func-

tions ��n
K� represent a lattice distortion forming a potential

well centered at n and trapping the exciton with an amplitude
distribution of �l

K. Toyozawa ansatz state �11� is not normal-
ized:

�K�K� = �
nm

e−iKn�m
K�m-n

K� Sn
K, �13�

where Sn
K is the Debye-Waller factor

Sn
K � ��m

K��m-n
K � = exp	N−1�

q

�	q
K�2�eiqn − 1�
 , �14�

and 	q
K are the Fourier transform of 	n

K.
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As in Ref. 1, we introduce the phonon-traced exciton den-
sity matrix 
e

K for the state �K�:


e
K � �K�K�−1Trph��K��K�� , �15�

where Trph stands for tracing over the phonon degrees of
freedom. To calculate 
e

K we assume that exciton-phonon
coupling leads to the formation of bands of collective
exciton-phonon states, and the many-body polaron wave
function for the ground-state band is given by the Toyozawa
ansatz2,3,14

�
e
K�mm� = N−1�K�K�−1�

nn�

eiK�n�-n��m-n
K �m�-n�

K�

Sn�-n
K . �16�

III. PHASE DIAGRAM

Let us start by reviewing properties of the traditional Hol-
stein polaron in the absence of off-diagonal coupling. For
weak coupling, exciton-phonon correlations may extend over
many lattice sites, forming a large polaron. With increasing
coupling strength, the width of the correlated region dimin-
ishes until the excitation, together with its phonon cloud, is
suddenly confined essentially to a single lattice site, creating
a small polaron. Along the way, other polaron properties
change as well, most notably the polaron effective mass
growing from that of the bare exciton at weak coupling to
values arbitrarily large in the strong-coupling region. The
principal feature of such a phase diagram is a boundary line
separating a small-polaron region from a large-polaron re-
gion; such a line is associated with the common notion of a
more-or-less sharp self-trapping transition. The “sharpness”
of this boundary line depends on the computational method;
if variational approaches are used, the thickness of the
boundary line would decrease with increasing sophistication
of the trial states.3

Although on formal ground the self-trapping transition is
expected to be smooth or analytical, it is commonplace for
approximate treatments such as ours to encounter disconti-
nuities where polaron structure changes in too complex a
fashion to be represented accurately within the scope of the
computational method. While such discontinuities must be
understood to be artifacts of an insufficiently flexible
method, they also serve as convenient “markers” identifying
the location of significant feature on the phase diagram and
thus have at least conceptual utility. The nature of this
nonanalyticity is such that within the indicated regions there
exists a function K��J ,g ,��, different for each calculation
method, identifying the location of a cusp in the dependence
of the variational energy on K, i.e., at fixed J, g, and �

� �EK

�K
�

K→K�+
� � �EK

�K
�

K→K�−
. �17�

If such a K��J ,g ,�� exists, the minimum-energy states at
small K��K��K�� are large-polaron-like and the minimum-
energy states at high K��K��K�� are small-polaron-like
while the two classes of relative minima coexist for K�. The
traditional self-trapping transition associated with the notion
of a discrete jump in the polaron effective mass corresponds

to the limit K�→0, i.e., to the point at which the large-
polaron region K� �−K� , +K�� is squeezed out of existence.
The set of points satisfying the condition K��J ,g ,��=0 thus
constitutes the traditional “self-trapping line,” which corre-
sponds to the strong-coupling edge of the K-dependent tran-
sition region associated with the computational method.

Our aim is to first examine the effect of off-diagonal cou-
pling in the absence of diagonal coupling �g=0�, and focus
on the interplay between exciton transfer integral J and off-
diagonal coupling �. Although off-diagonal exciton-phonon
coupling is a form of exciton-phonon interactions that sup-
ports polaron formation, it is also a transport mechanism and
competes with diagonal coupling both by promoting trans-
port and by driving the exciton-lattice correlations toward
dimeric structures rather than the site-localized structures
preferred by diagonal coupling. On the other hand, although
off-diagonal coupling is a transport mechanism, it also com-
petes with direct phonon-free exciton transfers since the lat-
tice distortions inherent in phonon-assisted transfers inhibit
direct transfers.

It is convenient to use the device of a phase diagram, as
the one shown in Fig. 1, to organize our discussion. The
qualitative characteristics of this familiar self-trapping tran-
sition, as described earlier for diagonal coupling, apply as
well to our treatment of off-diagonal coupling. Figure 1 de-
picts the J-� phase diagram for zero diagonal coupling
strength g=0. Two narrow tongue-shaped regions exist di-
viding the plane into two more-or-less distinct sections: a
strong off-diagonal coupling region occupying the upper por-
tion of the diagram and a weak off-diagonal coupling region
lying below. We find a discrete transition, which occurs in
the vicinity of the Brillouin-zone center, bearing some re-
semblance to the more familiar diagonal coupling phenom-
enon; however, we also find a discrete transition occurring in
the vicinity of the zone edge. Moreover, whereas the usual
conception of self-trapping focuses on dramatic changes that
occur at the Brillouin-zone center, leading to the notion of a
sharp transition, we find the discrete transition in both the
inner and outer zones to be relatively broad. In next section,
we will discuss the self-trapping near the Brillouin-zone cen-
ter. We delay the discussion of the zone-boundary self-
trapping to Sec. V.

FIG. 1. Phase diagram on the J-� plane for the Toyozawa an-
satz. The two tongue-shaped areas correspond to the self-trapping
discontinuity near the Brillouin-zone center �upper tongue� and near
the Brillouin-zone boundary �lower tongue�, respectively.
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IV. SELF-TRAPPING AT THE ZONE CENTER

We first consider the state of zero crystal momentum K
=0, for which heteroentanglement between the two species
in the Holstein Hamiltonian, the exciton, and the phonons, as
measured by the linearized von Neumann entropy, has the
form

E�
e
K=0� � 1 − Tre��
e

K=0�2� . �18�

Let 
̂ denote a density-matrix operator. Then Eq. �18� is a
linearized version of the von Neumann entropy S�
̂�
=−Tr�
̂ln
̂�; it shares with this latter quantity the properties:
�i� E=0⇔ 
̂= 
̂2, i.e., 
̂ is a pure state; �ii� Emax=1−1 /D
=E�I /D�, i.e., the linear entropy is at its maximum for the
totally mixed state I /D, where D is the dimension of the
space, and I is the identity matrix. Linear entropy �18� has a
close relation with the so-called two-Renyi entropy,21 and for
qubits, the linear and von Neumann entropy are, conve-
niently, monotonic functions of each other.

In order to investigate the nature of the large- and small-
polaron states, we turn to the point �J ,g ,��= �5,0 ,3.5�. This
point falls within the self-trapping area, where two distinct
classes of convergent solutions to the self-consistency equa-
tions exist for K=0. The polaron structure of the two zone-
center states corresponding to the convergent solutions is il-
lustrated by the exciton amplitudes and the phonon
displacements in Fig. 2. The solid lines are iterative results
obtained when the point �J ,g ,��= �5,0 ,3.5� is approached
from the upper portion of the phase diagram while the
dashed lines from the lower portion. Consequently, the solid
lines show the polaron structure typical of the upper portion
of the J-� plane, where off-diagonal exciton-phonon cou-
pling is relatively strong, and the dashed lines show the po-
laron structure typical of the lower portion of the phase dia-
gram, where the coupling strength � is small. As seen in Fig.
2, the strong-coupling polaron state �solid lines� are charac-
terized by a larger phonon displacement 	n


 and a slightly
more localized exciton amplitude �n


 than those of the weak-
coupling polaron state �dashed lines�, respectively. The find-
ings are consistent with the traditional notion of small and
large polarons. The size of the polarons represented by the
two solutions in Fig. 2 do not differ markedly although upon
close observation the exciton and phonon amplitudes of the
small-polaron state do decay somewhat more rapidly than
those of the large-polaron state. A feature more characteristic
of the difference between the large- and small-polaron states
in the presence of off-diagonal coupling is the fact that am-
plitudes in the small-polaron state are characterized by more
or stronger alternation of sign than found in the large-polaron
state. Although these alternations are ultimately due to the
antisymmetric nature of the off-diagonal coupling used in
this paper, their greater prominence on the strong-coupling
side of the zone-center transition in the J-� plane is consis-
tent with the more compact exciton-phonon correlations typi-
cal of small polarons.

The upper panel of Fig. 3 displays the heteroentanglement
between the exciton and the phonons for g=0. In the �J ,��
parameter space, we first calculate the zone-center linear en-
tanglement using convergent solutions which are obtained

with iteration initializations done in the weak-coupling re-
gion �therefore, initialized states in the iteration procedure
bear the large-polaron signature�. As discussed earlier in Sec.
III, the convergent solutions will eventually have small-
polaron characteristics for all crystal momenta if the off-
diagonal coupling strength exceeds a certain threshold, and
the zero-momentum state is the last one to go from large to
small polaron if the iteration is initialized by variational pa-
rameters with large-polaron characteristics. For zero crystal
momentum, the entanglement dependence on the exciton
tunneling J and off-diagonal coupling � reveals an abrupt
change at some critical combinations of J and �. As shown
in the upper panel of Fig. 3, an entanglement bluff similar to
the case of diagonal coupling only1 is found. On the cliff
plateau, the entanglement approaches its maximum value 1
−N−1; on the other side of the cliff edge, the exciton-phonon
heteroentanglement falls off rapidly to zero with increasing J
or decreasing �.

FIG. 2. Two types of convergent solution for Re�	n=1
K=0� �upper

panel� and Re��n=1
K=0� �lower panel�. �J ,g ,��= �5,0 ,3.5�. The solid

�dashed� line is obtained when this point is approached from the
strong �weak� coupling regime, or when iteration initialization is
refurbished from variational parameters bearing the strong �weak�
coupling characteristics.
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When g=0, off-diagonal coupling competes with direct
phonon-free exciton transfer integral J since the lattice dis-
tortions inherent in phonon-assisted transfers inhibit direct
transfers. For a given transfer integral J, as the off-diagonal
coupling strength � is raised, the exciton-phonon entangle-
ment will experience a sudden increase, which coincides
with the self-trapping transition. The solid line in the lower
panel of Fig. 3 is the projection of the cliff edge in the upper
panel onto the J-� plane, which corresponds to the upper
boundary of the K=0 discontinuity tongue in Fig. 1. It is
concluded that the small polaron with strong off-diagonal

coupling is a maximally entangled exciton-phonon entity
while the large polaron with weak off-diagonal coupling has
much-reduced exciton-phonon heteroentanglement. The en-
tanglement between the exciton and the phonons is therefore
a good measure of large and small polarons, and the transi-
tion in between.

As shown in Fig. 2, two distinct types of convergent so-
lutions to the self-consistency equations coexist with the
tongue-shaped region in the J-� phase diagram in Fig. 1.
Initializing the iteration procedure with variational param-
eters associated with small polaron, such as the solid lines in
Fig. 2, a second set of the exciton-phonon entanglement in
the �J ,�� parameter space can be obtained resulting in a
slightly different location of the cliff edge. The projection of
the new cliff edge onto the J-� plane is shown as the dashed
line in the lower panel of Fig. 3. For J�Jc=1.2, the solid
and dashed lines coincide; but as J is increased beyond 1.2,
the dashed line follows the lower boundary of the K=0 dis-
continuity tongue in Fig. 1. As a result, the projection lines
of the entanglement cliff edges obtained by the two differing
iteration initializations reproduce the tongue-shaped discon-
tinuity boundaries in Fig. 1. Moreover, for J�Jc=1.2, while
the discontinuity tongue no longer exists in Fig. 1, the en-
tanglement edge is still sharp enough to leave us a clear-cut
projection on the J-� plane all the way to J=0.

In the presence of simultaneous diagonal and off-diagonal
couplings, exciton-phonon heteroentanglement as a function
of J and � takes a slightly different shape. Shown in Fig. 4 is
the heteroentanglement as a function of J and � calculated
for g=1 with iteration initialization done in the weak-
coupling region. Compared with the upper panel of Fig. 3
�g=0�, change in entanglement as a function of � is less
abrupt for small J. In the large-polaron region, heteroen-
tanglement reaches a nonzero minimum even when �=0 due
to the presence of a finite strength of diagonal coupling.
Similar entanglement calculations can be repeated for itera-
tion initialization furnished in the strong-coupling region.
Consequently, projection of the heteroentanglement cliff
edges onto the J-� plane can also be carried out for g=1 and
higher values of diagonal coupling. Combining all projec-

FIG. 3. �Color online� Heteroentanglement between the exciton
and the phonons as measured by the linear entropy with g=0 is
displayed in the upper panel for the entire J-� phase diagram. The
entanglement is calculated for the state with zero crystal momentum
K=0. The solid and dashed lines in the lower panel are the projec-
tions of the entanglement onto the J-� plane calculated from two
types of convergent solution to the self-consistency equations. The
solid �dashed� line is obtained from a large-polaron �small-polaron�
initialization. The dotted lines depict the discontinuity tongue at the
Brillouin-zone center.

FIG. 4. Heteroentanglement between the exciton and the
phonons as measured by the linear entropy with g=1 is displayed
for the entire J-� phase diagram. The entanglement is calculated for
the state with zero crystal momentum K=0.
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tions in the three-dimensional parameter space spanned by J,
g, and � reveals a three-dimensional phase diagram for the
Toyozawa ansatz, which is displayed in Fig. 5. Altogether,
the exciton-phonon heteroentanglement for four values of
diagonal coupling, g=0, 1, 2, and 3, is calculated and pro-
jected onto the J-� plane. For each g, two types of iteration
initialization are furnished to the variational procedure. We
find that the presence of g facilitates the transition from large
polaron to small polaron such that self-trapping happens for
a smaller �.

Next we confine our attention to the interplay between g
and � with the transfer integral in the absence of the transfer
integral �J=0�. The case of zero J and nonzero �, however,
is not very realistic as � comes out of the first-order deriva-
tive of J with respect to the phonon coordinate. One close
realization of the limit of zero J and nonzero � would be
molecular crystals with small transfer integrals where, upon
involvements of certain phonon modes, such as the libra-
tional modes, the electronic overlap integrals between adja-
cent molecules can be greatly enhanced. Figure 6 shows the
entanglement between the exciton and the phonons as a func-
tion of diagonal and off-diagonal couplings. An entangle-
ment cliff is found with the entanglement approaching
1−N−1 on the cliff plateau, and dropping precipitously to
zero on the other side of the cliff. When J=0 and �=0, the
exact solution to the Holstein Hamiltonian includes a dis-
placed oscillator with the phonon displacement localized on
the site where the exciton resides:

��� = �
n

�nan
† exp�− g�bn

† − bn���0�ex-ph. �19�

Then the phonon-traced exciton density matrix has the form

�
e
K�m,m� = N−1 exp�− g2�1 − �m,m��� . �20�

If g is large, the off-diagonal elements of the density matrix
vanish so that the entanglement between the exciton and the
phonons approaches 1−N−1; if g=0, a phonon vacuum state

leads to zero entanglement and that �
e
K�m,m�=N−1, and the

density matrix satisfies the property 
=
2. As g is reduced to
zero, so is the entanglement between the exciton and the
phonons. The entanglement cliff edge in Fig. 6 can be pro-
jected onto the g-� plane, and the projection is sketched as a
line at the bottom of Fig. 5. If J is increased, such a line
projection onto the g-� plane will be split into two intersect-
ing lines, between which two convergent solutions to the
self-consistency equations are found. This has been demon-
strated clearly in Fig. 5, where two additional projection
lines onto the g-� plane are shown for J=2 and 4.

V. SELF-TRAPPING AT THE ZONE BOUNDARY

In this section, we consider the state of crystal momentum
K=�. In the absence of diagonal coupling, the phase dia-
gram spanned by transfer integral J and off-diagonal cou-
pling � has a second self-trapping region near the Brillouin-
zone boundary, shown by the smaller, much narrower
tongue-shaped region in Fig. 1. The zone-edge transition is,
in many ways, similar to the zone center one except that K�,
defined by Eq. �17�, will now be pushed toward the
Brillouin-zone edge �instead of K=0� with increasing �. In
the large-polaron region below the transition in the J-�
phase diagram, a plane-wave component dominates the pho-
non amplitudes while, after crossing over into the small-
polaron region, this plane-wave component is absent.5 The
zone-edge transition can be viewed as a binding or unbinding
of the free-phonon component. It is suggested that the zone-
edge state on the weak-coupling side of this transition is not
simply a large-polaron state but a mixture of large polarons
essentially at rest and “unbound” free phonons.

Despite many interesting phenomena associated with the
zone-edge transition, the discontinuity region near K=� is
much more difficult to probe due to poor numerical conver-
gence encountered at the zone boundary in the iterative pro-
cedure. This gives us more reasons to apply our new method
of using exciton-phonon entanglement as a measure to deter-
mine the large and small polarons, and the transition in be-

FIG. 5. Projection of heteroentanglement cliff edges onto the
J-� plane for four values of g : g=0, 1, 2, and 3. Heteroentangle-
ment between the exciton and the phonons is measured using the
linear entropy. Also shown is projection of heteroentanglement cliff
edges onto the g-� plane for four values of J : J=0, 2, and 4.

FIG. 6. Heteroentanglement between the exciton and the
phonons as measured by the linear entropy with J=0 is displayed
for the entire g-� phase diagram. The entanglement is calculated for
the state with zero crystal momentum K=0.
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tween. Similar to Eq. �18�, heteroentanglement between the
two species in the Holstein Hamiltonian, the exciton, and the
phonons, as measure by the linearized von Neumann entropy,
has the form

E�
e
K=�� � 1 − Tre��
e

K=��2� . �21�

Similar to the K=0 case, we also obtain an entanglement
cliff from applying the above expression: Eq. �21� ap-
proaches a maximum value 1−N−1 on the cliff plateau, and
falls off rapidly to zero on the other side of cliff edge. How-
ever, contrary to the K=0 case, little difference in entangle-
ment edge positions is found between the two convergent
solutions derived from different types of iteration initializa-
tions. Projection of the entanglement cliff edge onto J-�
plane, a sharp boundary between the small and large en-
tanglement regions, is shown in Fig. 7 �dashed line� for crys-
tal momentum K=�. The projection line goes right through
the discontinuity tongue �solid line� near the Brillouin-zone
boundary. In addition, the projection line also unambigu-
ously divides the J-� phase diagram into the large- and
small-polaron state regions. As one travels vertically upward

in the J-� phase diagram, entanglement between the exciton
and the phonons increases, and at the same time, the po-
laronic structure morphs from large polaron to small polaron.
By analyzing the heteroentanglement, we can distinguish the
small- and large-polaron states near the zone edge �K=��,
and make sure where the transition will take place even if
numerical difficulties prevent the discontinuity tongues from
being determined precisely near the Brillouin edge.

VI. CONCLUSION

Three quarters of a century have passed since the concept
of polaronic self-trapping was first conceived by
Landau,4,22–27 and yet questions linger on some fundamental
properties of polaron Hamiltonians. In this paper, we inves-
tigate the polaron problem with off-diagonal exciton-phonon
coupling using the quantum entanglement between the exci-
tons and the phonons as a probing tool. By considering the
off-diagonal coupling in Holstein Hamiltonian, we get the
heteroentanglement between the exciton and the phonons,
and study the dependence of entanglement on diagonal or
off-diagonal coupling and exciton transfer integral. We find
the heteroentanglement is a good measure of large and small
polarons, and the transition in between: the small polaron is
a maximally entangled exciton-phonon entity while the large
polaron has much-reduced exciton-phonon heteroentangle-
ment. With off-diagonal coupling, self-trapping focuses on
dramatic changes occurring at both vicinities near the
Brillouin-zone center and edge. Since entanglement can em-
body the property of polaron, by observing the abrupt change
in exciton-phonon entanglement, we can investigate the self-
trapping more clearly, especially near the Brillouin boundary
which cannot be solved with precision previously.
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